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Abstract
Having driven a large part of the decade’s progress in physics, nanoelectronics is now passing
from today’s realm of the extraordinary to tomorrow’s commonplace. This carries the problem
of turning proofs of concept into practical artefacts. Better and more sharply focused predictive
modelling will be the ultimate guide to optimizing mesoscopic technology as it matures.
Securing this level of understanding needs a reassessment of the assumptions at the base of the
present state of the field. We offer a brief overview of the underlying assumptions of
mesoscopic transport.

1. Context of mesoscopic transport

At the mesoscopic scale and even more so below that, the main
challenge in electron-transport theory is how to characterize
the intrinsic properties of a structure when surface-to-volume
ratios are no longer negligibly small. The notion of an
‘intrinsic’ property becomes ill-defined when the interfaces to
the external circuitry and the thermal surroundings compare in
size with the device that is coupled to them.

The issue is highlighted by a simple example. What,
in practice, is the real physical size of a sub-micrometre
conducting channel when the bulk scattering length in the
constituent material is measured in microns? There is no
reason to take the electrically relevant ‘length’ to be, say, the
lithographic one. How can one tell where the device proper
ends and its interface regions begin?

Such questions must first be addressed operationally. Only
after an answer suggests itself by what is actually seen in
measurement does it make sense to seek a general picture of
transport. As well as the dynamics, a well-posed transport
theory has to subsume the topological characterization of the
device (with interfaces) through the boundary conditions that
effectively define what is an ‘open system’ within quantum
kinetics.

The actual physical definition of a mesoscopic device
poses a non-trivial challenge within this field, conditioning its
future development as tightly as its present one. Moreover,
even deeper issues emerge whose physical expression and
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action are not negotiable. By that we mean that it remains
crucial always to give a full accounting of the global
electrodynamic properties of a conducting system, in its
entirety. The way of including these global properties is always
the same whether the device itself is classical or quantum,
macroscopic or mesoscopic.

To analyse a driven conductor as a structure of finite extent
is, by that act of abstraction, to specify it as an open system.
The constraints of microscopic and global charge conservation
both apply. The former alone, through the continuity equation,
cannot guarantee the latter when there are open boundaries to
act as effective generators and absorbers of electron flux.

Here it is the interlinked topology of driving fields and
currents that dictates the electromagnetic response. Thus,
any purely local specification of electrical quantities (such as
the chemical potential) is not enough to determine a globally
invariant quantity such as the current. For example, let us
posit that any current is to be generated by a difference of
chemical potential, set up between the leads of a conductor.
Then such a mechanism should always explicitly guarantee
the asymptotic stability of the leads far from the active device.
In other words, perfect screening (strict long-range neutrality)
must be respected.

In this paper we adopt a definite historical position: that
all of the conceptual and formal tools necessary for meso and
nanoscopic transport already exist within the developments of
the past. We have in mind the quantum-kinetic framework
typified by Fermi liquid theory, the Kubo formula, and
the Kadanoff–Baym–Keldysh non-equilibrium approach: not
only readily accessible but immediately applicable as the
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definitive benchmarks for any and all mesoscopic calculations
at the present.

In a normal, open system, finite resistance is
microscopically understandable if and only if there is a mech-
anism for dissipation of the electrical energy imparted to the
system. This physical necessity is not addressed by models
that admit elastic transmission as the sole, exclusive, scatter-
ing process.

It is worthwhile to recall the sharp qualitative distinction
between tunnelling and metallic conduction. In tunnelling à la
Bardeen, the conductivity as a function of barrier width d is

σ ∼ exp(−2d
√

2V0 − k2),

V0 being the barrier height in units of h̄2/m and k the
wavenumber of the incoming carrier. The exponentially
decaying nature of barrier tunnelling is clear.

As commonly applied, the Landauer conductance formula
has had the widest appeal of any transport model in
mesoscopics and has been taken as the ultimate generalization
of the earlier Bardeen picture of tunnelling transmission. But
the basic exponential form of the transmission probability is
now freely replaced with an arbitrary quantity (so long as it
does not exceed unity). See the comments by Frensley [3] as
well as those in [1].

On the other hand, metallic conduction presents a picture
of transport that is physically very different to tunnelling. It is
inherently tied to the many-body response of carriers in free,
extended states and involves collective displacements of the
Fermi sea. For this reason, more recent attempts to import
inelasticity and dissipation post hoc into one-body coherent-
transmission models of resistance have yet to demonstrate their
conformity with conservation laws.

Dissipation depends on the strength of electron–hole pair
relaxation; that is, it is the decay of the current–current
correlation function. By contrast, some authors attempt to
mimic this via decay of the single-particle strength alone,
which compromises particle conservation. In short: for any
regime where dissipation has a role, a conserving many-
body description is crucial. With that central concept in
mind, it is clear that there already exists a completely
established microscopic context for assessing the more recent
theoretical innovations.

We place specific focus in this paper on the notion
of mesoscopic electrical conductance. First, mesoscopic
conductance is the key to many other electronic phenomena
at this scale and below. Second, its theoretical basis is the one
most studied with the current set of methodologies.

In section 2 we revisit the conductance theory widely
associated with Landauer and Büttiker. In section 3 we
examine its leading experimental confirmations with an
eye to the conceptual issues reviewed above. Of special
relevance is the interplay of theory and the two complementary
experimental methods known as ‘two-terminal’ and ‘four-
terminal’ measurements. Finally in section 4 we summarize
the essential lessons that can be drawn for the present situation
in mesoscopic analysis.

2. Landauer conductance: theory and experiment

The physical resistance of a conductor takes its meaning only
through measurement of current and voltage directly through
the contacts to the device under test. Naturally the best contacts
for such work are those that are seen to have the smallest
disturbing effects on the inherent resistance of the sample.

For a uniform one-dimensional (1D) wire the Landauer
model interprets the conductance in terms of the transparency
of the wire in series with its contacts (see for example [1, 2]).
The whole is conceived as a quantum barrier. For a perfectly
transmitting barrier the transmission function, namely the ratio
of outgoing to incoming carrier flux, attains its maximum of
unity. In other cases there is reflection at the source interface,
and the transmission ratio falls below its maximum.

The Landauer formula for the ‘two-terminal’ conductance
(see below) is

G2 = G0T � G0; G0 = 2e2

h
≈ 77.5 μS. (1)

The transmission function is T and G0 is Landauer’s
quantum: the conductance of a perfectly uniform, perfectly
one-dimensional metallic conductor constituting a perfectly
transmissive quantum barrier. Any actual scattering by the
1D barrier is represented by T . The transmission theory of
conductance is, at base, a phenomenology. This is because the
governing parameter T is never specified microscopically, as
an actual physical object within the theory. The theory leaves
to others the central task of computing the physical answer
essential to the character of the transmission function, and to
any practical computation. See, for example, the analysis by
Agraı̈t et al [4].

As a practical fact T can indeed include any scattering,
whether elastic or inelastic, if it is calculated starting from the
conserving, many-body microscopics of a conductive system.
In particular the action of dissipation in mesoscopic transport
can be directly shown via the Kubo formula, from which the
characteristic Landauer conductance steps emerge [5].

Perhaps it is appropriate to make an historical remark here.
In Landauer’s very first publication on (classical) resistivity
due to localized scattering in metallic conduction [6], he
included in T any process that could disturb the otherwise
ballistic motion of single carriers. Landauer explicitly
recognized the action of inelastic contributions to resistance;
it was other writers who went on, well after him, to claim
an exclusive role for coherence in mesoscopics. As a result,
Landauer himself felt obliged to comment on the conceptual
gap that opened up between his original conception and its
widespread reinterpretations. See his opening comment in [7]
which annotates the reprint of his seminal paper, [6]. Landauer
notes further how few people, in the present day, still seem to
take any time to read the 1957 work.

2.1. Two-terminal measurements

The Landauer formula refers to the expected outcome for
conductance when the two probes of the voltmeter span the
entire structure, consisting of the device and its two interfaces
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in series. In effect, the voltage probes coincide with the pair
of terminals through which the current enters the sample and
returns to the macroscopic supply circuit. It is referred to as a
two-terminal arrangement.

In this model it is always assumed that the system presents
a strictly elastic barrier to electron flow; indeed, the barrier may
be ideally transparent. In any case, dissipation cannot occur
within this description, regardless of how the conductor may
be probed.

Nevertheless, all normal conductors always entail
dissipation. It follows that there must be a corresponding,
steady electrical energy loss associated with the Landauer
conductance—as with every resistive system—occurring at the
familiar well-defined rate

P = I V = G0T V 2. (2)

Where is P actually dissipated? The power must be discharged
somewhere. Yet it cannot be released within the core of the
1D structure; nor can it be released at the interfaces, because
the Landauer theory of two-terminal transmission excludes
dissipation in the whole barrier and in particular at ideal
transmission, T = 1. In fact, perfect conduction has been
achieved and widely reported [8–10].

Experiments have thus fully confirmed the existence of
a Landauer conductance. However, they provide no insights
into the concrete issue of physical dissipation. So an apparent
‘missing link’ remains between equations (1) and (2).

2.2. Four-terminal measurements

In principle, one may be able to eliminate the interface
series resistances entering into the two-terminal conductance,
so accessing the actual resistance of a ballistic device. If
a pair of perfect voltage probes were to be placed across
the 1D conductor at the heart of the structure, they would
directly read off the local electrostatic potentials and provide
the quantities needed to deduce the intrinsic resistance. The
additional inner probes should be spatially separated from
the current-supply contacts, which remain asymptotically far
away: a conceptual arrangement known as a four-terminal
measurement set-up [1]4.

The essential requirement on all internal voltage probes is
‘non-invasiveness’. That is: the probes must not substantially
disrupt the pattern of carrier flux within the device before
it is probed in this way. Otherwise it would be impossible
to deconvolve the probes’ influence uniquely from the raw
measurements. What makes the mesoscopic scale notoriously
challenging is precisely that interventions with probes tend
strongly to modify the internal landscape, putting any data at
risk of being too sample-specific to give systematic clues to the
transport physics.

Assuming the feasibility of non-invasive probes, the
second hurdle is that one does not know a priori where to
place them because the physical distinction between the ‘true’
mesoscopic conductor and its interfaces is ill-defined. The

4 An early substantial conflict regarding application of the expression for G4

over against G2 was first resolved by [11].

margin of uncertainty in locating the probes is the scale of
the screening regions associated with the Landauer dipole5.
Nevertheless, if the voltage probes genuinely do not disrupt
current flow, one can envisage making successive tests to
systematically relocate them until measurements no longer
report any voltage drops from locally changing densities in the
interface regions. One could then argue operationally that the
‘inner’ conductor had been marked out.

Granted all of those conditions, there is a Landauer four-
terminal conductance formula for expressing the true, intrinsic
conductance of a uniform one-dimensional wire. Thus

G4 = G0
T

1 − T
. (3)

The physical explanation of equation (3) is detailed
elsewhere [1]. The formula implicitly adjusts the Fermi levels
immediately adjacent to the left and right ‘boundaries’ of the
inner conductor, by removing the potential contribution from
the Landauer dipole.

Büttiker [13] originally derived a general four-terminal
conductance formula in terms of the partial transmission
probabilities Ti j between all pairs i, j of available terminals
(current leads have i = 1, 2, voltage leads j = 3, 4):

G4 ≡ G2
(T31 + T32)(T41 + T42)

T31T42 − T41T32
. (4)

As long as non-invasiveness applies, equations (3) and (4) are
equivalent. We will return to this formula shortly.

3. Implications

The additional information in a four-terminal measurement
can be combined with a two-terminal measurement to give
the series contact resistance, due strictly to the interfaces.
In a perfect quantum barrier where T = 1, equation (3)
clearly implies infinite conductance. The intrinsic wire has
no resistance. Thus the contribution to the ideal two-terminal
conductance G2 = G0, can come only from the interfaces.

We now discuss a few examples out of the large
experimental literature, and how we can come to understand
these results with the help of available theories. It is not
inappropriate to say that certain observed features remain
unexplained, and do need further laboratory investigations.

3.1. Perfect conduction

An essentially perfect four-terminal measurement was reported
in the remarkable experiment by de Picciotto et al [14]. Using
a very high-quality 1D sample produced by cleaved-edge
overgrowth and built-in voltage probes of low invasiveness,

5 Since the prevailing view of conductance is strictly for single, coherent, non-
interacting carriers, Landauer’s dipole is attributed, not to the inhomogeneous
Coulomb screening response at the boundaries (see [12]), but only to a band-
structure induced bottleneck effect on coherent transmission. The electron
wavefunction is envisaged to go from its extended bulk form in the source
and drain contacts, to highly constricted form in the 1D conductor whose
density of states is greatly reduced. The current, of course, is unaffected and
is everywhere constant through the system; but the Landauer dipole reduces it
by reducing the overall transmission ratio T .

3



J. Phys.: Condens. Matter 21 (2009) 101001 Viewpoint

they detected essentially zero resistance in their core
conductor, so that the transmission factor was essentially
unity. Their direct four-terminal findings complement the
earlier purely two-terminal data by van Wees et al [8],
demonstrating perfect Landauer quantization of G2 after
removal of ‘parasitic’ access resistances.

De Picciotto et al also displayed the two-terminal
conductance of their sample. A noticeable shortfall about 7%
below G0 is observed in the height of the sub-band steps in G2.
According to equation (1) this implies a non-ideal transmission
factor: T = 0.93. On the other hand, equation (3) and their
zero-resistance data imply T = 1.

Other four-probe experiments have been performed on
mesoscopic samples:

• Kvon et al [15] reported a small but finite intrinsic
four-terminal resistance G−1

4 in a diffusive mesoscopic
wire, where the bulk elastic-scattering mean free path is
comparable to, possibly less than, the sample length so
that transmission is no longer ballistic. The presence
of a stepwise structure is nevertheless evident in the
corresponding plots of G−1

2 , although coherent transport
does not apply in their regime. It is still possible, however,
to subsume these results within the Landauer picture.

• A four-terminal experiment somewhat closer to [14]
was performed by Reilly et al [16] in a conventionally
fabricated, low-disorder wire built on two-dimensional
GaAs heterojunction material. Unlike the zero-resistance
results [14], the four-terminal conductance of the gate-
defined structures reported here (down to a 1D wire of zero
nominal length) is neither infinite nor even excessively
large. Instead, one sees in the raw four-terminal
conductance a series of perfect Landauer steps that seem
to follow equation (1) rather than equation (3), despite the
radical structural difference between G2 and G4 within the
transmission theory. Curiously, it is reported [16] that this
holds true even in zero-length channels.

3.2. Negative intrinsic resistance

A very different light on quantum ballistic transport has
been shed by recent multi-terminal experiments [17, 18]. In
each case certain specific resistances, measured internally to
the device-plus-lead assembly, become negative. What is
addressed here is an ‘absolute’ resistance V/I at the level of
Ohm’s linear law; decidedly not some differential resistance
dV/dI (well known to become negative in strongly nonlinear
transport, as in resonant-tunnelling structures) which—in sharp
contrast to absolute resistance—is not constrained by the
thermodynamics of power dissipation, namely the relation
P = I 2 R > 0. Further, if R4 = 1/G4 is negative then
equation (3) also shows that T > 1.

The intrinsic resistance measured by Gao et al [17] is
theoretically identical with R4 deduced from Büttiker’s generic
description of multi-probe conduction, equation (4), and
therefore also with Landauer’s equivalent version equation (3)
at low invasiveness [1]. According to [17] it is the difference
of two products of partial probabilities, T31T42 − T41T32, which
conceivably explains their negative intrinsic resistance [13]. If
so, however, this entails a set of puzzling contradictions [19]:

• if R4 < 0 then the power dissipation in the device proper
is P = I 2 R4 < 0 and the device must spontaneously be
giving up energy to the rest of the circuit,

• if R4 < 0 and T > 1 then unitarity (probability) is
not conserved, even though the Landauer formula (3),
equivalent to the Büttiker formula (4), is predicated on
unitary single-electron propagation.

The second experiment by Kaya and Eberl [18], examined
a closely related quantity, the three-terminal resistance, with
the conclusion that this too can be negative. In this set-up
only one voltage probe is placed inside the structure, while its
companion probe remains located on the far current lead.

The implications here are the same as above. The multi-
probe Büttiker model of transmission strictly precludes the
three-terminal resistance from becoming negative. If the latter
theory is correct under the appropriate mesoscopic conditions,
the data seems once more to describe effects that are not
consistent with the theory.

We may sum up the negative-resistance outcomes as
follows. Under physically reasonable conditions, such data
imply the violation of particle and energy conservation in
normal ballistic systems. Within such systems the laws of
linear transport ought to hold, internally and externally and
regardless of scale. Unless the theory of coherent multi-probe
transport is wrong, the measurements must be open to other
interpretations than the notion of ohmic resistances’ being
negative (but otherwise plain and ordinary).

3.3. The 0.7 anomaly

Finally we comment on the ‘0.7 anomaly’. In this
phenomenon, a step in the two-probe conductance (anywhere
in height between 0.5 and 0.9 G0 but quite often ≈0.7G0),
briefly precedes the onset of the normal, full-sized Landauer
step as the carrier density is increased above the sub-band
threshold.

Such behaviour is not predicted by the non-interacting
transmission model of two-probe conductance. Therefore it
is presumed to be an effect of many-body correlations. The
existing 0.7 literature reveals a continuing unresolved debate,
not only between proponents of the two main theoretical lines
but also among the outcomes of various reported experiments.
Thus, for instance, if one carefully reads the contributions to
the recent special issue of J. Phys.: Condens. Matter [20]
one can form the reasonable impression that the 0.7 anomaly is
shrouded in mystery—and remains so.

In one picture of the anomaly, it is due to the spontaneous
opening of a spin-polarized energy gap, with the sub-band
of spin states at lower energy being responsible for the 0.7
precursor step. This approach nevertheless relies heavily on
the accepted phenomenology of conductance as dissipationless
transmission, so that the issues attaching to the central place of
energy loss must also apply here.

In the competing quite different picture, a local spin-
polarized impurity in the 1D conductor generates a Kondo-like
resonance at an energy near the bottom of the 1D conduction
band. This somewhat enhances the density of states, and
hence the carrier flux, just before the Fermi level accesses
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the normal conduction-band threshold (where the standard
Landauer conductance is observed). There is no reason to
believe that this scenario, at least, would have a problem being
cast within a microscopic framework such as that of the Kubo
response formula.

Ultimately, of course, only firmly validated measurements
will distinguish among theoretical alternatives. In the case
of the spin-polarization picture, there should be a channel-
length dependence of the observed size of the anomaly [21].
This is not so in the Kondo picture, which posits a much
more localized exchange-interaction effect. But various sets of
experimental data on the length dependence, obtained to date,
can be cited in support of either possibility. In other words: so
far, there are no firm results to show.

4. Conclusion

The heart and soul of a mesoscopic theory reside in its physical
credibility. Securing that credibility requires sustained, diligent
and harmonious work by experimentalists and theorists. As
we have shown above, however, careful study of some
contemporary experimental works in mesoscopics inspires less
than full confidence in their potential to clear the way to better
mesoscopic modelling.

There are enough internal and mutual conflicts in the
interpretation of some recent observations to cloud the basic
physical issues rather than clarify them. The theoretical task is
not made easier when experimental works, appearing in the
record, contradict one another and even themselves—not to
mention the entire spectrum of available mesoscopic models,
widely accepted or otherwise.
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